Free access
Volume 67, Number 1, January-February 2012
Page(s) 49 - 64
Published online 22 December 2011
  1. Giovannucci E., A review of epidemiologic studies of tomatoes, lycopene, and prostate cancer, Exp. Biol. Med. 227 (2002) 852–859. [PubMed]
  2. Giovannucci E., Lycopene and prostate cancer risk. Methodological considerations in the epidemiologic literature, Pure Appl. Chem. 74 (2002) 1427–1434. [CrossRef]
  3. Giovannucci E., Rimm E.B., Liu Y., Stampfer M.J., Willett W.C., A, prospective study of tomato products, lycopene, and prostate cancer risk, J. Natl. Cancer Inst. 94 (2002) 391–398. [PubMed]
  4. Arab L., Steck S., Lycopene and cardiovascular disease, Am. J. Clin. Nutr. 71 (2000) 1691–1695.
  5. Sesso H.D., Liu S.M., Gaziano J.M., Buring J.E., Dietary lycopene, tomato-based food products and cardiovascular disease in women, J. Nutr. 133 (2003) 2336–2341. [PubMed]
  6. Boffetta P., Couto E., Wichmann J., Ferrari P., Trichopoulos D., Bueno-de-Mesquita H.B., van Duijnhoven F.J.B., Buchner F.L., Key T., Boeing H., Nothlings U., Linseisen J., Gonzalez C.A., Overvad K., Nielsen M.R.S., Tjonneland A., Olsen A., Clavel-Chapelon F., Boutron-Ruault M.C., Morois S., Lagiou P., Naska A., Benetou V., Kaaks R., Rohrmann S., Panico S., Sieri S., Vineis P., Palli D., van Gils C.H., Peeters P.H., Lund E., Brustad M., Engeset D., Huerta J.M., Rodriguez L., Sanchez M.J., Dorronsoro M., Barricarte A., Hallmans G., Johansson I., Manjer J., Sonestedt E., Allen N.E., Bingham S., Khaw K.T., Slimani N., Jenab M., Mouw T., Norat T., Riboli E., Trichopoulou A., Fruit and vegetable intake and overall cancer risk in the European Prospective Investigation Into Cancer and Nutrition (EPIC), J. Natl. Cancer Inst. 102 (2010) 529–537. [CrossRef] [PubMed]
  7. Jordan J., The Heirloom tomato as cultural object: investigating taste and space, Sociol. Rural. 47 (2007) 20–41. [CrossRef]
  8. Beckles D.M., Factors affecting the postharvest sugars and total soluble solids in tomato (Solanum lycopersicum L.) fruits, Postharvest Biol. Technol. 63 (2012) 129–140. [CrossRef]
  9. Stevens M.A., Inheritance of tomato quality components, in: J.J. (Ed.), Plant breeding reviews, AVI Publ. Co., Westport, Connecticut, U.S.A., 1986.
  10. Baldet P., Hernould M., Laporte F., Mounet F., Just D., Mouras A., Chevalier C., Rothan C., The expression of cell proliferation-related genes in early developing flowers is affected by a fruit load reduction in tomato plants, J. Exp. Bot. 57 (2006) 961–970. [CrossRef] [PubMed]
  11. Ho L.C., Hewitt J.D., Fruit development, Chapman and Hall, N.Y., U.S.A., 1986.
  12. Mounet F., Moing A., Garcia V., Petit J., Maucourt M., Deborde C., Bernillon S., Le Gall G., Colquhoun I., Defernez M., Giraudel J.L., Rolin D., Rothan C., Lemaire-Chamley M., Gene and metabolite regulatory network analysis of early developing fruit tissues highlights new candidate genes for the control of tomato fruit composition and development, Plant Physiol. 149 (2009) 1505–1528. [CrossRef] [PubMed]
  13. Wang H., Schauer N., Usadel B., Frasse P., Zouine M., Hernould M., Latche A., Pech J.C., Fernie A.R., Bouzayen M., Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling, Plant Cell 21 (2009) 1428–1452. [CrossRef] [PubMed]
  14. Gillaspy G., Bendavid H., Gruissem W., Fruits – a developmental perspective, Plant Cell 5 (1993) 1439–1451. [CrossRef] [PubMed]
  15. Bohner J., Bangerth F., Cell number, cell size and hormone levels in semi-isogenic mutants of Lycopersicon pimpinellifolium differing in size, Physiol. Plant. 72 (1988) 316–320. [CrossRef]
  16. Bertin N., Lecomte A., Brunel B., Fishman S., Genard M., A model describing cell polyploidization in tissues of growing fruit as related to cessation of cell proliferation, J. Exp. Bot. 58 (2007) 1903–1913. [CrossRef] [PubMed]
  17. Klann E.M., Hall B., Bennett A.B., Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit, Plant Physiol. 112 (1996) 1321–1330. [CrossRef] [PubMed]
  18. Carrari F., Fernie A.R., Metabolic regulation underlying tomato fruit development, J. Exp. Bot. 57 (2006) 1883–1897. [CrossRef] [PubMed]
  19. Cheniclet C., Rong W.Y., Causse M., Frangne N., Bolling L., Carde J.-P., Renaudin J.-P., Cell expansion and endoreduplication show a large genetic variability in pericarp and contribute strongly to tomato fruit growth, Plant Physiol. 139 (2005) 1984–1994. [CrossRef] [PubMed]
  20. Chevalier C., Nafati M., Mathieu-Rivet E., Bourdon M., Frangne N., Cheniclet C., Renaudin J.P., Gevaudant F., Hernould M., Elucidating the functional role of endoreduplication in tomato fruit development, Ann. Bot. 107 (2011) 1159–1169. [CrossRef] [PubMed]
  21. Prudent M., Causse M., Genard M., Tripodi P., Grandillo S., Bertin N., Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection, J. Exp. Bot. 60 (2009) 923–937. [CrossRef] [PubMed]
  22. Menu T., Saglio P., Granot D., Dai N., Raymond P., Ricard B., High hexokinase activity in tomato fruit perturbs carbon and energy metabolism and reduces fruit and seed size, Plant Cell Environ. 27 (2004) 89–98. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  23. Odanaka S., Bennett A.B., Kanayama Y., Distinct physiological roles of fructokinase isozymes revealed by gene-specific suppression of Frk1 and Frk2 expression in tomato, Plant Physiol. 129 (2002) 1119–1126. [CrossRef] [PubMed]
  24. Ohyama A., Ito H., Sato T., Nishimura S., Imai T., Hirai M., Suppression of acid invertase activity by antisense RNA modifies the sugar composition of tomato fruit, Plant Cell Physiol. 36 (1995) 369–376. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  25. Zanor M.I., Osorio S., Nunes-Nesi A., Carrari F., Lohse M., Usadel B., Kuhn C., Bleiss W., Giavalisco P., Willmitzer L., Sulpice R., Zhou Y.H., Fernie A.R., RNA interference of LIN5 in tomato confirms its role in controlling Brix content, uncovers the influence of sugars on the levels of fruit hormones, and demonstrates the importance of sucrose cleavage for normal fruit development and fertility, Plant Physiol. 150 (2009) 1204–1218. [CrossRef] [PubMed]
  26. Nesbitt T.C., Tanksley S.D., fw2.2 directly affects the size of developing tomato fruit, with secondary effects on fruit number and photosynthate distribution, Plant Physiol. 127 (2001) 575–583. [CrossRef] [PubMed]
  27. Nguyen-Quoc B., Foyer C.H., A role for ’futile cycles’ involving invertase and sucrose synthase in sucrose metabolism of tomato fruit, J. Exp. Bot. 52 (2001) 881–889. [CrossRef] [PubMed]
  28. Steinhauser M.C., Steinhauser D., Koehl K., Carrari F., Gibon Y., Fernie A.R., Stitt M., Enzyme activity profiles during fruit development in tomato cultivars and Solanum pennellii, Plant Physiol. 153 (2010) 80–98. [CrossRef] [PubMed]
  29. Yamaki S., Metabolism and accumulation of sugars translocated to fruit and their regulation, J. Jpn. Soc. Hortic. Sci. 79 (2010) 1–15. [CrossRef]
  30. Luengwilai K., Beckles D.M., Starch granules in tomato fruit show a complex pattern of degradation, J. Agric. Food Chem. 57 (2009) 8480–8487. [CrossRef] [PubMed]
  31. Wang F., Sanz A., Brenner M.L., Smith A., Sucrose synthase, starch accumulation, and tomato fruit sink strength, Plant Physiol. 101 (1993) 321–327. [PubMed]
  32. Bungerkibler S., Bangerth F., Relationship between cell number, cell-size and fruit size of seeded fruits of tomato (Lycopersicon esculentum Mill.), and those induced parthenocarpically by the application of plant-growth regulators, Plant Growth Regul. 1 (1983) 143–154.
  33. Petreikov M., Yeselson L., Shen S., Levin I., Schaffer A.A., Efrati A., Bar M., Carbohydrate balance and accumulation during development of near-isogenic tomato lines differing in the AGPase-L1 allele, J. Am. Soc. Hortic. Sci. 134 (2009) 134–140.
  34. Guan H.P., Janes H.W., Light regulation of sink metabolism in tomato fruit .1. Growth and sugar accumulation, Plant Physiol. 96 (1991) 916–921. [CrossRef] [PubMed]
  35. Yelle S., Hewitt J.D., Robinson N.L., Damon S., Bennett A.B., Sink metabolism in tomato fruit. 3. Analysis of carbohydrate assimilation in a wild-species, Plant Physiol. 87 (1988) 737–740. [CrossRef] [PubMed]
  36. Obiadalla-Ali H., Fernie A.R., Lytovchenko A., Kossmann J., Lloyd J.R., Inhibition of chloroplastic fructose 1,6-bisphosphatase in tomato fruits leads to decreased fruit size, but only small changes in carbohydrate metabolism, Planta 219 (2004) 533–540. [CrossRef] [PubMed]
  37. N’tchobo H., Dali N., Nguyen-Quoc B., Foyer C.H., Yelle S., Starch synthesis in tomato remains constant throughout fruit development and is dependent on sucrose supply and sucrose synthase activity, J. Exp. Bot. 50 (1999) 1457–1463. [CrossRef]
  38. Robinson N.L., Hewitt J.D., Bennett A.B., Sink metabolism in tomato fruit. 1. Developmental-changes in carbohydrate metabolizing enzymes, Plant Physiol. 87 (1988) 727–730. [CrossRef] [PubMed]
  39. Beckles D.M., The subcellular location of ADPglucose pyrophosphorylase in starch-storing cells, Univ. Camb., Camb., U.K., 1998, 168 p.
  40. Cong B., Barrero L.S., Tanksley S.D., Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication, Nat. Genet. 40 (2008) 800–804. [CrossRef] [PubMed]
  41. Knapp S., Bohs L., Nee M., Spooner D.M., Solanaceae – a model for linking genomics with biodiversity, Comp. Funct. Genomics 5 (2004) 285–291. [CrossRef] [PubMed]
  42. Agong S.G., Schittenhelm S., Friedt W., Assessment of tolerance to salt stress in Kenyan tomato germplasm, Euphytica 95 (1997) 57–66. [CrossRef]
  43. Turhan A., Seniz V., Estimation of certain chemical constituents of fruits of selected tomato genotypes grown in Turkey, Afr. J. Agric. Res. 4 (2009) 1086–1092.
  44. Turhan A., Seniz V., Kuscu H., Genotypic variation in the response of tomato to salinity, Afr. J. Biotechnol. 8 (2009) 1062–1068.
  45. Balibrea M.E., Martinez-Andujar C., Cuartero J., Bolarin M.C., Perez-Alfocea F., The high fruit soluble sugar content in wild Lycopersicon species and their hybrids with cultivars depends on sucrose import during ripening rather than on sucrose metabolism, Funct. Plant Biol. 33 (2006) 279–288. [CrossRef]
  46. Yelle S., Chetelat R.T., Dorais M., Deverna J.W., Bennett A.B., Sink metabolism in tomato fruit. 4. Genetic and biochemical-analysis of sucrose accumulation, Plant Physiol. 95 (1991) 1026–1035. [CrossRef] [PubMed]
  47. Baxter C.J., Carrari F., Bauke A., Overy S., Hill S.A., Quick P.W., Fernie A.R., Sweetlove L.J., Fruit carbohydrate metabolism in an introgression line of tomato with increased fruit soluble solids, Plant Cell Physiol. 46 (2005) 425–437. [NASA ADS] [CrossRef] [MathSciNet] [PubMed]
  48. Miron D., Schaffer A.A., Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon esculentum Mill. and the sucrose accumulating Lycopersicon hirsutum Humb. and Bonpl., Plant Physiol 95 (1991) 623–627. [CrossRef] [PubMed]
  49. Stommel J.R., Enzymatic components of sucrose accumulation in the wild tomato species Lycopersicon peruvianum, Plant Physiol. 99 (1992) 324–328. [CrossRef] [PubMed]
  50. Fridman E., Carrari F., Liu Y.S., Fernie A.R., Zamir D., Zooming in on a quantitative trait for tomato yield using interspecific introgressions, Science 305 (2004) 1786–1789. [CrossRef] [PubMed]
  51. Klann E.M., Chetelat R.T., Bennett A.B., Expression of acid invertase gene controls sugar composition in tomato (Lycopersicon) fruit, Plant Physiol. 103 (1993) 863–870. [PubMed]
  52. Husain S.E., James C., Shields R., Foyer C.H., Manipulation of fruit sugar composition but not content in Lycopersicon esculentum fruit by introgression of an acid invertase gene from Lycopersicon pimpinellifolium, New Phytol. 150 (2001) 65–72. [CrossRef]
  53. Husain S.E., Thomas B.J., Kingston-Smith A.H., Foyer C.H., Invertase protein, but not activity, is present throughout development of Lycopersicon esculentum and L. pimpinellifolium fruit, New Phytol. 150 (2001) 73–81. [CrossRef]
  54. Levin I., Gilboa N., Cincarevsky F., Oguz I., Petreikov M., Yeselson Y., Shen S., Bar M., Schaffer A.A., Epistatic interaction between two unlinked loci derived from introgressions from Lycopersicon hirsutum further modulates the fructose-to-glucose ratio in the mature tomato fruit, Israel J. Plant Sci. 54 (2006) 215–222. [CrossRef]
  55. Levin I., Gilboa N., Yeselson E., Shen S., Schaffer A.A., Fgr, a major locus that modulates the fructose to glucose ratio in mature tomato fruits, Theor. Appl. Genet. 100 (2000) 256–262. [CrossRef]
  56. Schauer N., Zamir D., Fernie A.R., Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicum complex, J. Exp. Bot. 56 (2005) 297–307. [CrossRef] [PubMed]
  57. Schaffer A.A., Levin I., Oguz I., Petreikov M., Cincarevsky F., Yeselson Y., Shen S., Gilboa N., Bar M., ADPglucose pyrophosphorylase activity and starch accumulation in immature tomato fruit: the effect of a Lycopersicon hirsutum-derived introgression encoding for the large subunit, Plant Sci. 152 (2000) 135–144. [CrossRef]
  58. Kortsee A.J., Appeldoorn N.J.G., Oortwijn M.E.P., Visser R.G.F., Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives, Planta 226 (2007) 929–939. [CrossRef] [PubMed]
  59. Petreikov M., Shen S., Yeselson Y., Levin I., Bar M., Schaffer A.A., Temporally extended gene expression of the ADP-Glc pyrophosphorylase large subunit (AgpL1) leads to increased enzyme activity in developing tomato fruit, Planta 224 (2006) 1465–1479. [CrossRef] [PubMed]
  60. Bertin N., Causse M., Brunel B., Tricon D., Genard M., Identification of growth processes involved in QTLs for tomato fruit size and composition, J. Exp. Bot. 60 (2009) 237–248. [CrossRef] [PubMed]
  61. Weber H., Heim U., Golombek S., Borisjuk L., Wobus U., Assimilate uptake and the regulation of seed development, Seed Sci. Res. 8 (1998) 331–345.
  62. Weber H., Borisjuk L., Wobus U., Sugar import and metabolism during seed development, Trends Plant Sci. 2 (1997) 169–174. [CrossRef]
  63. Ohto M., Fischer R.L., Goldberg R.B., Nakamura K., Harada J.J., Control of seed mass by APETALA2, Proc. Natl. Acad. Sci. U.S.A. 102 (2005) 3123–3128. [CrossRef] [PubMed]
  64. Yousef G.G., Juvik J.A., Evaluation of breeding utility of a chromosomal segment from Lycopersicon chmielewskii that enhances cultivated tomato soluble solids, Theor. Appl. Genet. 103 (2001) 1022–1027. [CrossRef]
  65. Eshed Y., Zamir D., An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield-associated QTL, Genetics 141 (1995) 1147. [PubMed]
  66. Krieger U., Lippman Z.B., Zamir D., The flowering gene SINGLE FLOWER TRUSS drives heterosis for yield in tomato, Nat. Genet. 42 (2010) 459–463. [CrossRef] [PubMed]
  67. Luengwilai K., Fiehn O.E., Beckles D.M., Comparison of leaf and fruit metabolism in two tomato (Solanum lycopersicum L.) genotypes varying in total soluble solids, J. Agric. Food Chem. 58 (2010) 11790–11800. [CrossRef] [PubMed]
  68. Galiana-Balaguer L., Rosello S., Nuez F., Characterization and selection of balanced sources of variability for breeding tomato (Lycopersicon) internal quality, Genet. Res. Crop Evol. 53 (2006) 907–923. [CrossRef]
  69. Rick C.M., High soluble solids content in large-fruited tomato lines derived from a wild green-fruited-species, Hilgardia 42 (1974) 493–510.
  70. Stevens M.A., Kader A.A., Albrightholton M., Algazi M., Genotypic variation for flavor and composition in fresh market tomatoes, J. Am. Soc. Hortic. Sci. 102 (1977) 680–689.
  71. Grierson D., Kader A.A., Fruit ripening and quality, Chapman and Hall, Lond., U.K., 1986.
  72. Nookaraju A., Upadhyaya C.P., Pandey S.K., Young K.E., Hong S.J., Park S.K., Park S.W., Molecular approaches for enhancing sweetness in fruits and vegetables, Sci. Hortic. 127 (2010) 1–15. [CrossRef]
  73. Stitt M., Sulpice R., Keurentjes J., Metabolic networks: How to identify key components in the regulation of metabolism and growth, Plant Physiol. 152 (2010) 428–444. [CrossRef] [PubMed]
  74. Fernie A.R., Geigenberger P., Stitt M., Flux an important, but neglected, component of functional genomics, Curr. Opin. Plant Biol. 8 (2005) 174–182. [CrossRef] [PubMed]
  75. Stitt M., The first will be last and the last will be first: non-regulated enzymes call the tune, BIOS Sci. Publ. Ltd., Oxf., U.K., 1999.
  76. Barratt D.H.P., Derbyshire P., Findlay K., Pike M., Wellner N., Lunn J., Feil R., Simpson C., Maule A.J., Smith A.M., Normal growth of Arabidopsis requires cytosolic invertase but not sucrose synthase, Proc. Natl. Acad. Sci. U.S.A. 106 (2009) 13124–13129. [CrossRef] [PubMed]
  77. Weber A.P.M., Solute transporters as connecting elements between cytosol and plastid stroma, Curr. Opin. Plant Biol. 7 (2004) 247–253. [CrossRef] [PubMed]
  78. Lecourieux F., Lecourieux D., Vignault C., Delrot S., A sugar-inducible protein kinase, VvSK1, regulates hexose transport and sugar accumulation in grapevine cells, Plant Physiol. 152 (2010) 1096–1106. [CrossRef] [PubMed]
  79. Farre E.M., Fernie A.R., Willmitzer L., Analysis of subcellular metabolite levels of potato tubers (Solanum tuberosum) displaying alterations in cellular or extracellular sucrose metabolism, Metabolomics 4 (2008) 161–170. [CrossRef] [PubMed]
  80. Schaffer A.A., Petreikov M., Inhibition of fructokinase and sucrose synthase by cytosolic levels of fructose in young tomato fruit undergoing transient starch synthesis, Physiol. Plant. 101 (1997) 800–806. [CrossRef]
  81. Roitsch T., Gonzalez M.C., Function and regulation of plant invertases: sweet sensations, Trends Plant Sci. 9 (2004) 606–613. [CrossRef] [PubMed]
  82. Ruan Y.L., Jin Y., Yang Y.J., Li G.J., Boyer J.S., Sugar input, metabolism, and signaling mediated by invertase: roles in development, yield potential, and response to drought and heat, Mol. Plant 3 (2010) 942–955. [CrossRef] [PubMed]
  83. Halford N.G., Purcell P.C., Hardie D.G., Is hexokinase really a sugar sensor in plants?, Trends Plant Sci. 4 (1999) 117–120. [CrossRef] [PubMed]
  84. Rolland F., Baena-Gonzalez E., Sheen J., Sugar sensing and signalling in plants: Conserved and novel mechanisms, Annu. Rev. Plant Biol. 57 (2006) 675–709. [CrossRef] [PubMed]
  85. Dai N., Schaffer A., Petreikov M., Shahak Y., Giller Y., Ratner K., Levine A., Granot D., Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence, Plant Cell 11 (1999) 1253–1266. [CrossRef] [PubMed]
  86. Roessner-Tunali U., Hegemann B., Lytovchenko A., Carrari F., Bruedigam C., Granot D., Fernie A.R., Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development, Plant Physiol. 133 (2003) 84–99. [CrossRef] [PubMed]
  87. Smith A.M., Prospects for increasing starch and sucrose yields for bioethanol production, Plant J. 54 (2008) 546–558. [CrossRef] [PubMed]
  88. Kortstee A.J., Appeldoorn N.J.G., Oortwijn M.E.P., Visser R.G.F., Differences in regulation of carbohydrate metabolism during early fruit development between domesticated tomato and two wild relatives, Planta 226 (2007) 929–939. [CrossRef] [PubMed]
  89. Luengwilai K., Tananuwong K., Shoemaker C.F., Beckles D.M., Starch molecular structure shows little association with fruit physiology and starch metabolism in tomato, J. Agric. Food Chem. 58 (2010) 1275–1282. [CrossRef] [PubMed]
  90. Stark D.M., Timmerman K.P., Barry G.F., Preiss J., Kishore G.M., Regulation of the amount of starch in plant-tissues by Adp glucose pyrophosphorylase, Science 258 (1992) 287–292. [CrossRef] [PubMed]
  91. Obiadalla-Ali H., Understanding of carbon partitioning in tomato fruit, Max-Planck Inst. Mol. Plant Physiol., Golm, Ger., 2003.
  92. Gao Z.F., Sagi M., Lips S.H., Carbohydrate metabolism in leaves and assimilate partitioning in fruits of tomato (Lycopersicon esculentum L.) as affected by salinity, Plant Sci. 135 (1998) 149–159. [CrossRef]
  93. Yin Y.G., Kobayashi Y., Sanuki A., Kondo S., Fukuda N., Ezura H., Sugaya S., Matsukura C., Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato (Solanum lycopersicum L. cv. ’Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner, J. Exp. Bot. 61 (2010) 563–574. [CrossRef] [PubMed]
  94. Centeno D.C., Osorioa S., Nunes-Nesi A., Bertolo A.L.F., Carneiro R.T., Araújo W.L., Steinhauser M.-C., Michalska J., Rohrmann J., Geigenberger P., Olivera S.N., Stitt M., Carrari F., Rose J.K.C., Fernie A.R., Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening, Plant Cell 23 (2011) 162–184. [CrossRef] [PubMed]
  95. Anon., United States standards for grades of fresh tomatoes, USDA, Wash. DC, U.S.A., 1991.
  96. Chetelat R.T., Deverna J.W., Bennett A.B., Effects of the Lycopersicon chmielewskii sucrose accumulator gene (Sucr) on fruit yield and quality parameters following introgression into tomato, Theor. Appl. Genet. 91 (1995) 334–339. [PubMed]
  97. Levin I., Lalazar A., Bar M., Schaffer A.A., Non GMO fruit factories strategies for modulating metabolic pathways in the tomato fruit, Ind. Crop. Prod. 20 (2004) 29–36. [CrossRef]
  98. Clarke M., Carbohydrates, industrial, Wiley-VCH, N.Y., U.S.A., 1995.
  99. Luengwilai K., Sukjamsai K., Kader A.A., Responses of ’Clemenules Clementine’ and ’W. Murcott’ mandarins to low oxygen atmospheres, Postharvest Biol. Technol. 44 (2007) 48–54. [CrossRef]
  100. Luengwilai K., Beckles D.M., Climacteric ethylene is not required for initiating chilling injury in tomato (Solanum lycopersicum L.), J. Stored Prod. Postharvest Res. 1 (2010) 1.
  101. D’Aoust M.A., Yelle S., Nguyen-Quoc B., Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit, Plant Cell 11 (1999) 2407–2418. [CrossRef] [PubMed]
  102. Chengappa S., Guilleroux M., Phillips W., Shields R., Transgenic tomato plants with decreased sucrose synthase are unaltered in starch and sugar accumulation in the fruit, Plant Mol. Biol. 40 (1999) 213–221. [CrossRef] [PubMed]
  103. Amemiya T., Kanayama Y., Yamaki S., Yamada K., Shiratake K., Fruit-specific V-ATPase suppression in antisense-transgenic tomato reduces fruit growth and seed formation, Planta 223 (2006) 1272–1280. [CrossRef] [PubMed]
  104. Goren S., Huber S.C., Granot D., Comparison of a novel tomato sucrose synthase, SlSUS4, with previously described SlSUS isoforms reveals distinct sequence features and differential expression patterns in association with stem maturation, Planta 223 (2011) 1011–1023. [CrossRef]
  105. Carrari F., Baxter C., Usadel B., Urbanczyk-Wochniak E., Zanor M.-I., Nunes-Nesi A., Nikiforova V., Centeno D., Ratzka A., Pauly M., Sweetlove L.J., Fernie A.R., Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior, Plant Physiol. 142 (2006) 1380–1396. [CrossRef] [PubMed]
  106. Schaffer A.A., Petreikov M., Sucrose to starch metabolism in tomato fruit undergoing transient starch accumulation, Plant Physiol. 113 (1997) 739–746. [PubMed]