Free access
Volume 65, Number 2, March-April 2010
Page(s) 97 - 112
Published online 29 March 2010
  1. Modarres R.Da Silva V.P.R., Rainfall trends in arid and semi-arid regions of Iran, J. Arid Environ. 70 (2007) 344–355. [CrossRef]
  2. Anon., Land degradation in South Asia: its severity, cause and effects upon the people, FAO, World Soil Res. Rep. 78, Rome, Italy, 1994.
  3. Vahdati K., Nursery management and grafting of walnut, Khaniran Publ., Tehran, Iran, 2003.
  4. Fulton A., Buchner R., The effect of water stress on walnut trees growth, productivity and economics, UC Farm Advis. Draft Publ., Tehama Cty., Univ. Calif., U.S.A., Febr. 23, 2006.
  5. Pallardy S.G.Rhoads J.L., Morphological adaptations to drought in seedlings of deciduous angiosperms, Can. J. For. Res. 23 (1993) 1766–1774. [CrossRef]
  6. Girona J., Cohen M., Rodrigues I.Mata M., Walnut seedlings response to different levels of NaCl in irrigation water, Acta Hortic. 311 (1993) 191–200.
  7. Scartazza A., Proietti S., Moscatello A.Augusti A., Effect of water shortage on photosynthesis, growth and storage carbohydrate accumulation in walnut (Juglans regia L.), Acta. Hortic. 544 (2001) 277–232.
  8. Rosati A., Metcalf S., Buchner R., Fulton A.Lampinen B., Tree water status and gas exchange in walnut under drought, high temperature and vapour pressure deficit, J. Hortic. Sci. Biotech. 81 (2006) 415–420.
  9. Cochard H.L., Coll L., Roux X.L.Améglio T., Unraveling the effects of plant hydraulics on stomatal closure during water stress in walnut, Plant Physiol. 128 (2002) 282–290. [CrossRef] [PubMed]
  10. Lucier A.A., Hinckley T. M., Phenology, growth and water relations of irrigated and non-irrigated black walnut, For. Ecol. Manag. 4 (1982) 127–142. [CrossRef]
  11. Parker W.C.Pallardy S.G., Gas exchange during a soil drying cycle in seedlings of four black walnut (Juglans nigra L.) families, Tree Physiol. 9 (1991) 339–348. [PubMed]
  12. Yancey P.H., Clark M.E., Hand S.C., Bowlus R.D.Somero G.N., Living with water stress: Evolution of osmolyte system, Science 217 (1982) 1214–1222. [CrossRef] [PubMed]
  13. McCue K.F.Hanson A.D., Drought and salt tolerance: Towards understanding and application, Trends Biotech. 8 (1990) 358–362. [CrossRef]
  14. Samaras Y., Bressan R.A., Csonka L.N., Garcia-Rios M., Paino D’Urzo M., Rhodes D., Proline accumulation during water deficit, in: Smirnoff N. (Ed.), Environment and plant metabolism. Flexibility and acclimation, Bios Scientific Publ., Oxford, UK, 1995., pp. 161–187.
  15. Smirnoff N.Stewart G.R., Stress metabolites and their role in coastal plants, Vegetatio 62 (1985) 273–278. [CrossRef]
  16. Smirnoff N.Cumbes Q.J., Hydroxyl radical scavenging activity of compatible solutes, Phytochem. 28 (1989) 1057–1060. [CrossRef]
  17. Hare P.D.Cress W.A., Metabolic implications of stress-induced proline accumulation in plants, Plant Growth Regul. 21 (1997) 79–102. [CrossRef]
  18. Meier H., Reid J.S.G., Reserve polysaccharides other than starch in higher plants, in: Loewus F.A., Tanner W. (Eds.), Encyclopaedia of plant physiology, New series, Springer- Verlag, Berlin, Ger., 1982.
  19. Prado F.E., Boero C., Gallardo M.Gonzalez J.A., Effect of NaCl on germination, growth and soluble sugar content in Chenopodium quinoa Willd. seeds, Bot. Bull. Acad. Sin. 41 (2000) 27–34.
  20. Finkelstein R.R.Gibson S.I., ABA and sugar interactions regulating development: cross-talk or voices in a crowd, Curr. Opin. Plant Biol. 5 (2001) 26–32. [CrossRef]
  21. Hoekstra F.A., Golovina E.A.Buitink J., Mechanisms of plant desiccation tolerance, Trends Plant Sci. 6 (2001) 431–438. [CrossRef] [PubMed]
  22. Koch KKoch K., Carbohydrate-modulated gene expression in plants, Annu. Rev. Plant Physiol. Plant. Mol. Biol. 47 (1996) 509–540. [CrossRef] [PubMed]
  23. Sheen J., Zhou L.Jang J.C., Sugars as signalling molecules, Curr. Opin. Plant Biol. 2 (1999) 410–418. [CrossRef] [PubMed]
  24. Smeekens SSmeekens S., Sugar-induced signal transduction in plants, Annu. Rev. Plant Biol. 51 (2000) 49–81. [CrossRef]
  25. Al Hakimi A., Monneveux P.Galiba G., Soluble sugars, proline and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC from T. polonicum into T. durum, J. Genet. Breed. 49 (1995) 237–244.
  26. Pandey R., Agarwal R.M., Water stress-induced changes in praline contents and nitrate reductase activity in rice under light and dark conditions, Physiol. Mol. Biol. Plants 4 (1998) 53–57.
  27. Hohl M.Peter S., Water relations of growing maize coleoptiles. Comparison between mannitol and polyethylene glycol 6000 as external osmotica for adjusting turgor pressure, Plant Physiol. 95 (1991) 716–722. [CrossRef] [PubMed]
  28. Lu Z.Neumann P.M., Water-stressed maize, barley and rice seedlings show species diversity in mechanisms of leaf growth inhibition, J. Exp. Bot. 49 (1998) 1945–1952. [CrossRef]
  29. Carpita N., Sabularse D., Monfezinos D., Delmer D.P., Determination of the pore size of cell walls of living plant cells, Sci. 205 (1979) 1144–1147. [CrossRef]
  30. Verslues P.E., Ober E.S.Sharp R.E., Root growth and oxygen relations at low water potentials. Impact of oxygen availability in polyethylene glycol solutions, Plant Physiol. 116 (1998) 1403–1412. [CrossRef] [PubMed]
  31. Lotfi N., Vahdati K., Kholdebarin B., Reza A., Hassani D., Effects of water stress on germination in different provenances of J. regia L. seeds from different bioclimatic zones in Iran, in: Yujin Jung, Proc. 5th Int. Crop Sci. Congr. Exhib., Korean Soc. Crop Sci. Int. Soc. Crop Sci., Jeju, Korea, 2008, p. 194.
  32. Lotfi N., Vahdati K., Kholdebarin B.Najafian Ashrafi E., Germination, mineral composition, and ion uptake in walnut under salinity conditions, HortScience 44 (2009) 1352–1357.
  33. Michel B.E.Kaufmann M.R., The osmotic potential of polyethylene glycol 6000, Plant Physiol. 51 (1973) 914–916. [CrossRef] [PubMed]
  34. Vahdati K.Hoseini S.H., Introducing an innovative procedure for large commercial seed lots stratification in Persian walnut, Acta Hortic. 705 (2006) 355–357.
  35. Turner N.CTurner N.C., Techniques and experimental approaches for the measurement of plant water status, Plant Soil. 58 (1981) 339–366. [CrossRef]
  36. Bates L.S., Waldron R.P.Teare I.D., Rapid determination of free proline for water stress studies, Plant Soil. 39 (1973) 205–208. [CrossRef]
  37. Dubois M., Gilles K.A., Hamilton J.K., Rebers P.A.Smith F., Colorimetric method for determination of sugars and related substances, Anal. Chem. 28 (1956) 350–356. [CrossRef] [PubMed]
  38. Jobson J.D., Applied multivariate data analysis, Vol. II: Categorical and multivariate methods, Springer-Verlag, Berlin, Germany, 1992.
  39. Zhang X.L., Zang R.G.Li C.Y., Population differences in physiological and morphological adaptations of Populus davidiana seedlings in response to progressive drought stress, Plant Sci. 166 (2004) 791–797. [CrossRef]
  40. Duan B.L., Lu Y.W., Yin C.Y., Junttila O.Li C.Y., Physiological responses to drought and shade in two contrasting Picea asperata populations, Physiol. Plant. 124 (2005) 476–484. [CrossRef]
  41. Li C.Y.Wang K.Y., Differences in drought responses of three contrasting Eucalyptus microtheca F. Muell. populations, For. Ecol. Manag. 179 (2003) 377–385. [CrossRef]
  42. Berg L.V.D.Zeng Y.J., Response of South African indigenous grass species to drought stress induced by polyethylene glycol (PEG) 6000, S. Afr. J. Bot. 72 (2006) 284–286. [CrossRef]
  43. Verslues P.E.Sharp R.E., Proline accumulation in maize primary roots at low water potentials. II Metabolic source of increased proline deposition in the elongation zone, Plant Physiol. 119 (1999) 1349–1360. [CrossRef] [PubMed]
  44. Larher F., Leport L., Petrivalsky M.Chappart M., Effectors for the osmoinduced proline response in higher plants, Plant Physiol. Biochem. 31 (1993) 911–922.
  45. Fischer C.Höll W., Food reserves in Scots pine (Pinus sylvestris L.). I. Seasonal changes in the carbohydrate and fat reserves of pine needles, Trees 5 (1991) 187–195.
  46. Bartels D.Sunkar R., Drought and salt tolerance in plants, Crit. Rev. Plant Sci. 24 (2005) 23–58. [CrossRef]
  47. Chaves M.MChaves M.M., Effects of water deficits on carbon assimilation, J. Exp. Bot. 42 (1991) 1–16. [CrossRef]
  48. Bogeat-Triboulot M.B., Brosche M., Renaut J., Jouve L., Le Thiec D., Fayyaz P., Vinocur B., Witters E., Laukens K., Teichmann T., Altman A., Hausman J.F., Polle A., Kangasjrvi J.Dreyer E., Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions, Plant Physiol. 143 (2007) 876–892. [CrossRef] [PubMed]
  49. Patakas A.Noitsakis B., Leaf age effects on solute accumulation in water-stressed grapevines, Plant Physiol. 158 (2001) 63–69. [CrossRef]
  50. Kameli A.Losel D.M., Carbohydrates and water status in wheat plants under water stress, New Phytol. 125 (1993) 609–614. [CrossRef]
  51. Delauney A.J.Verma D.P.S., Proline biosynthesis and osmoregulation in plants, Plant J. 4 (1993) 215–223. [CrossRef]
  52. Gibson S.IGibson S.I., Control of plant development and gene expression by sugar signalling, Curr. Opin. Plant Biol. 8 (2005) 93–102. [CrossRef] [PubMed]
  53. Wang Z., Quebedeaux B.Stutte G.W., Partitioning of [14C] glucose into sorbitol and other carbohydrates in apple under water stress, Aus. J. Plant Physiol. 23 (1996) 245–251. [CrossRef]