Free access
Volume 61, Number 3, May-June 2006
Page(s) 151 - 162
Published online 30 June 2006
  1. Kennedy A.C., Smith K.L., Soil microbial diversity and the sustainability of agricultural soil, Plant Soil 170 (1995) 75–86. [CrossRef]
  2. Bowen G.D., Rovira A.D., The rhizosphere and its management to improve plant growth, Adv. Agron. 66 (1999) 1–102. [CrossRef]
  3. Hiltner L., Über neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache, Arb. Dtsch. Landwirtsch. Ges. 98 (1904) 59–78.
  4. Lynch J.M., The rhizosphere, John Wiley, New York, USA, 1990.
  5. Smith S.E., Read D.J., Mycorrhizal symbiosis, Acad. Press, London, UK, 1997.
  6. Linderman R.G., Vesicular-arbuscular mycorrhizae and soil microbial interactions, in: Bethlenfalvay G.J., Lindeman R.G. (Eds.), Mycorrhizae in sustainable agriculture, ASA Spec. Publ., Madison, Wisconsin, USA, 1992, pp. 45–70.
  7. Safir G.R., Involvement of cropping systems, plant produced compounds and inoculum production in the functioning of VAM fungi, in: Pfleger F.L., Linderman R.G. (Eds.), Mycorrhizae and Plant health, APS Press, Minnesota, USA, 1994, pp. 239–259.
  8. Requena N., Pérez-Solís E., Azcón-Aguilar C., Jeffries P., Barea J.M., Management of indigenous plant-microbe symbiosis aids restoration of desertified ecosystems, Appl. Environ. Microbiol. 67 (2001) 495–498. [CrossRef] [PubMed]
  9. Hetrick B.A.D., Wilson G.W.T., Figge D.A.H., The influence of mycorrhizal symbiosis and fertilizer amendments on establishment of vegetation in heavy metal mine spoil, Environ. Pollut. 86 (1994) 171–179. [CrossRef] [PubMed]
  10. Azcón-Aguilar C., Jaizme-Vega M.C., Calvet C., The contribution of arbuscular mycorrhizal fungi to the control of soil-borne plant pathogens, in: Gianinazzi S., Schüepp H., Barea J.M., Haselwandter K. (Eds.), Mycorrhizal technology in agriculture: from genes to bioproducts, Birkhäuser Verlag, Switzerland, 2002, pp. 187–197.
  11. Barea J.M., Azcón-Aguilar C., Azcón R., Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems, in: Gange A.C., Brown V.K., (Eds.), Multitrophic interactions in terrestrial systems, Blackwell Science, Oxford, UK, 1997, pp. 65–77.
  12. Kloepper J.W., Plant growth-promoting rhizobacteria (other systems), in: Okon Y. (Ed.), Azospirillum / plant associations, CRC Press, Boca Ratón, USA, 1994, pp. 111–118.
  13. Burr T.J., Schroth M.N., Suslow T.V., Increased potato yields by treatments of seed pieces with specific strains of Pseudomonas fluorescens and P. putida, Phytopathol. 68 (1978) 1377–1383. [CrossRef]
  14. Polonenko D.R., Scher F.M., Kloepper J.W., Singleton C.A., Laliberté M., Zaleska I., Effects of root colonizing bacteria on inoculation of soybean roots by Bradyrhizobium japonicum, Can. J. Microbiol. 33 (1987) 498–503. [CrossRef]
  15. Caesar A.J., Burr T.J., Growth promotion of apple seedlings and rootstocks by specific strains of bacteria, Phytopathol. 77 (1987) 1583–1588. [CrossRef]
  16. Gardner J.M., Chandler J.L., Feldman A.W., Growth promotion and inhibition by antibiotic-producing fluorescent Pseudomonads on Citrus roots, Plant Soil 77 (1984) 103–113. [CrossRef]
  17. Dobbelaere S., Croonenborghs A., Thys A., Vande Browk A., Vanderleyden J., Phytostimulatory effect of Azospirillum brasilense strains and auxins on wheat, Plant Soil 212 (1999) 155–164.
  18. Ompal S., Panwar J.D.S., Effect of nitrogen fixing and phosphorus solubilizing bacteria on nutrient uptake and yield of wheat, Indian J. Plant Physiol. 2 (1997) 211–213.
  19. Kloepper J.W., Plant growth-promoting rhizobacteria as biological control agents, in: Metting F.B., Dekker M. (Eds.), Soil microbial ecology, applications in agriculture, forestry and environmental management, Dekker M., Inc., New York, USA, 1992, pp. 255–274.
  20. Barea J.M., Rhizosphere and mycorrhiza of field crops, in: Toutant J.P., Balazs E., Galante E., Lynch J.M., Schepers J.S., Werner D., Werry P.A. (Eds.), Biological resource management: connecting science and policy (OECD), INRA éditions and Springer, Paris, France, 2000, pp. 110–125.
  21. Azcón R., Selective interactions between free-living rhizospheric bacteria and vesicular-arbuscular mycorrhizal fungi, Soil Biol. Biochem. 21 (1989) 639–644. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  22. Rodríguez R., Los nematodos de la platanera (Musa acuminata AAA, sub grupo Cavendish Enana) en Canarias (1963–1984), XOBA-Monografía 4, Caja Insul. Ahorr. Canar., Las Palmas de Gran Canaria, Spain, 1990, 58 pp.
  23. Singh V.S., Nath R.P., Pathogenicity of root-knot nematode Meloidogyne incognita on papaya, Indian J. Nematol. 26 (1996) 115–116.
  24. Ramakrishnan S., Rajendran G., Influence of Meloidogyne incognita on yield components and physiological functions of papaya, Nematol. Med. 26 (1998) 225–228.
  25. Jaizme-Vega M.C., Azcón R., Response of some tropical and subtropical cultures to endomycorrhizal fungi, Mycorrhiza 5 (1995) 213–217. [CrossRef]
  26. Balakrishna R., Bararaj D.J., Mallesha B.C., Selection of efficient VA mycorrhizal fungi for papaya, Biol. Agric. Hortic. 13 (1996) 1–6.
  27. Trindade A.V., Siqueira J.O., Almeida F.P., Mycorrhizal dependency of papaya commercial varieties, Pesqui. Agropecu. Bras. 36 (2001) 1485–1494.
  28. Jaizme-Vega M.C., Tenoury P., Pinochet J., Jaumot M., Interactions between the root-knot nematode Meloidogyne incognita and the mycorrhizal association Glomus mosseae and Grande Naine banana, Plant Soil 196 (1997) 27–35. [CrossRef]
  29. Alarcón A., Davies F.T. Jr., Egilla J.N., Fox T.C., Estrada- Luna A.A., Ferrera-Cerrato R., Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress, Rev. Latinoam. Microbiol. 44 (2002) 31–37. [PubMed]
  30. Jaizme-Vega M.C., Rodríguez-Romero A.S., Piñero Guerra M.S., Potential use of rhizobacteria from the Bacillus genus to stimulate the plant growth of micropropagated banana, Fruits 59 (2004) 83–90. [CrossRef] [EDP Sciences]
  31. Hussey R.S., Barker K.R., A comparison of method of collecting inocula of Meloidogyne spp. including a new technique, Plant Dis. Rep. 57 (1973) 1025–1028.
  32. Hewitt E.J., Sand and water culture method used in the study of plant nutrition, Techn. Comm. 22, Farnham R. Commonw. Agric. Burlaux, Bucks, UK, 1952.
  33. Jones J.B., Benjamin B., Mills H.A., Plant analysis handbook. 1. Methods of plant analysis and interpretation, Micro-Macro Publ., Athens, GA, USA, 1991, 213 p.
  34. Rund R.C., Fertilizers, in: Williams S. (Ed.), Official Methods of Analysis of the Association of Official Analytic Chemist, 14th Edition, AOAC, Ed. Sidney Williams, Arlington, Virginia, USA, 1984, pp. 8–37.
  35. Baker K.R., Nematode extraction and bioassays, in: Barker K.R., Carter C.C., Sasser J.N. (Eds.), An advanced treatise on Meloidogyne, Vol. II. Methodology, North Carol. State Univ., Graphics Raleigh, NC, USA, 1985.
  36. Phillips J.M., Hayman D.S., Improved procedures for cleaning roots and stain parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection, Trans. Brit. Mycol. Soc. 55 (1970) 158–161. [CrossRef]
  37. Koske R.E., Gemma J.H., A modified procedure for staining root to detect VA mycorrhizas, Mycol. Res. 92 (1989) 486–505. [CrossRef]
  38. Giovanetti M., Mosse B., An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots, New Phytol., 84 (1980) 489–500.
  39. Dhillion S.S., Dual inoculation of pretransplant stage Oryza sativa L. plants with indigenous vesicular-arbuscular mycorrhizal fungi and fluorescent Pseudomonas spp., Biol. Fertil. Soils 13 (1992) 147–151.
  40. Singh S., Kapoor K.K., Effects of inoculation of phosphate-solubilizing microorganisms and an arbuscular mycorrhizal fungus on mungbean grown under natural soil conditions, Mycorrhiza 7 (1998) 249–253. [CrossRef] [PubMed]
  41. Ravnskov S., Jakobsen I., Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber, Mycorrhiza 8 (1999) 329–334. [CrossRef]
  42. Attia M., The efficiency improvements of mineral fertilizers used and maize yield by arbuscular mycorrhizal fungus and plant growth-promoting rhizobacteria, Ann. Agr. Sci. Cairo 44 (1999) 41–53.
  43. Germida J.J., Walley F.L., Plant growth-promoting rhizobacteria alters rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat, Biol. Fertil. Soils 23 (1997) 113–120. [CrossRef]
  44. Andreucci F., Fusconi A., Gamalero E., Piras R., Repetto O., Sampó S., Trotta A., Martinotti M.G., Berta G., Reduction of the chemical inputs in a vegetable crop by the use of beneficial rhizospheric microorganisms, INCO-DC, Second Ann. Rep., INCO, 1999.
  45. Siddiqui I.A., Ehteshamul-Haque S., Shaukat S.S., Use of Pseudomonas aeruginosa in the control of root-knot disease complex in tomato: the effects of different inoculum of Meloidogyne javanica and Rhizoctonia solani, Acta Agrobot. 54 (2001) 45–54.
  46. Khan M.R., Kounsar K., Hamid A., Effect of certain rhizobacteria and antagonistic fungi on root-nodulation and root-knot nematode disease of green gram, Nematol. Med. 30 (2002) 85–89.
  47. Jaizme-Vega M.C., Pinochet J., Growth response of banana to three mycorrhizal fungi in Pratylenchus goodeyi infested soil, Nematropica 27 (1997) 69–76.
  48. Siddiqui I.A., Mahmood I., Effect of a plant growth-promoting bacterium, an AM fungus and soil types on the morphometrics and reproduction of Meloidogyne javanica on tomato, Appl. Soil Ecol. 8 (1998) 77–84. [CrossRef]